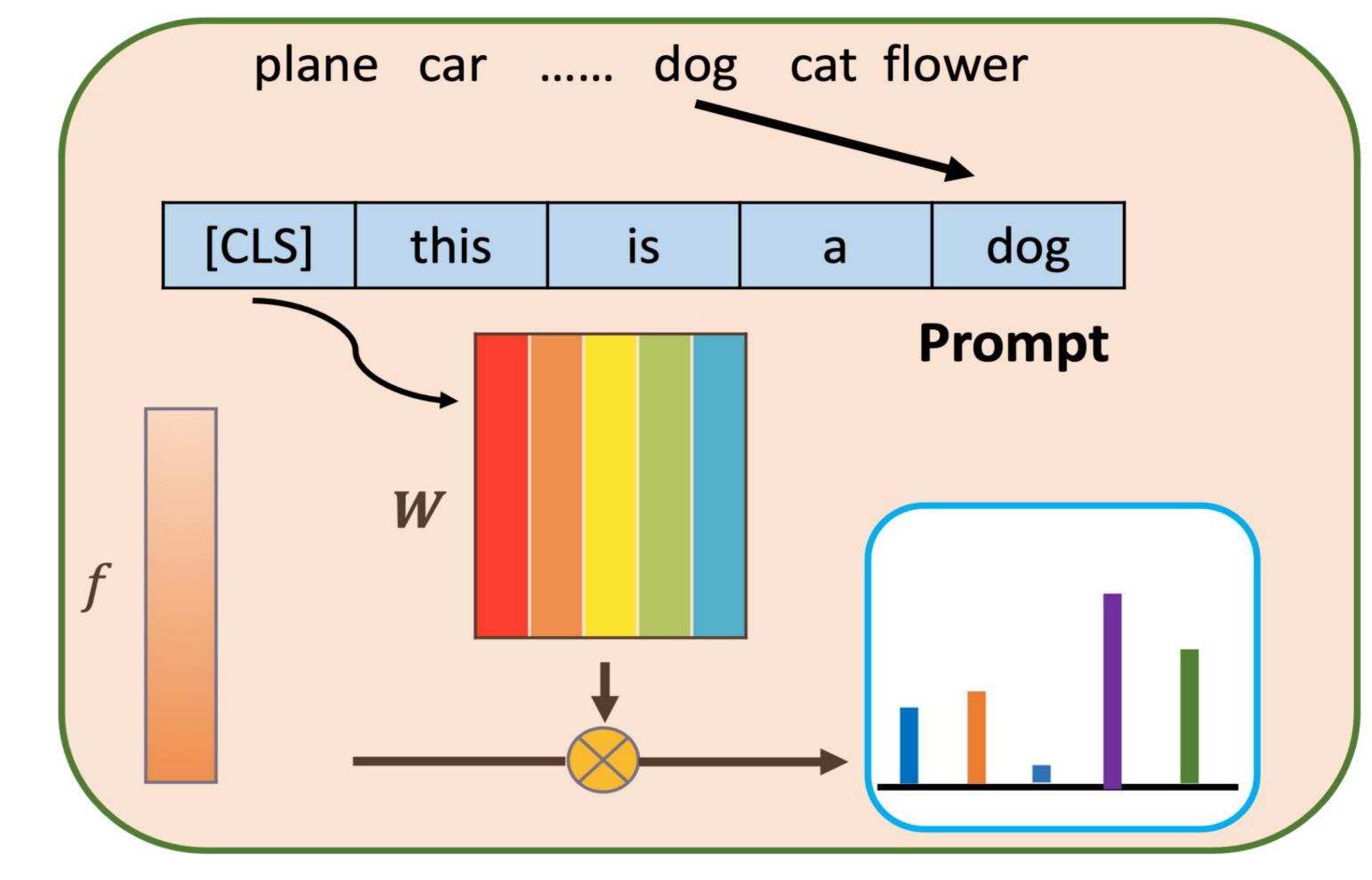


CLIPath: Fine-tune CLIP with Visual Feature Fusion for Pathology Image Analysis Towards Minimizing Data Collection Efforts Zhengfeng Lai, Zhuoheng Li, Luca Cerny Oliveira, Joohi Chauhan, Brittany Dugger, Chen-Nee Chuah



- \succ CLIP has shown its strong transferability
 - It was pre-trained on 400M image-text pairs
 - It shows promising zero-shot ability
- > Adaptation of CLIP in downstream tasks
 - Full-model fine-tuning
 - Time-consuming, require heavy computes

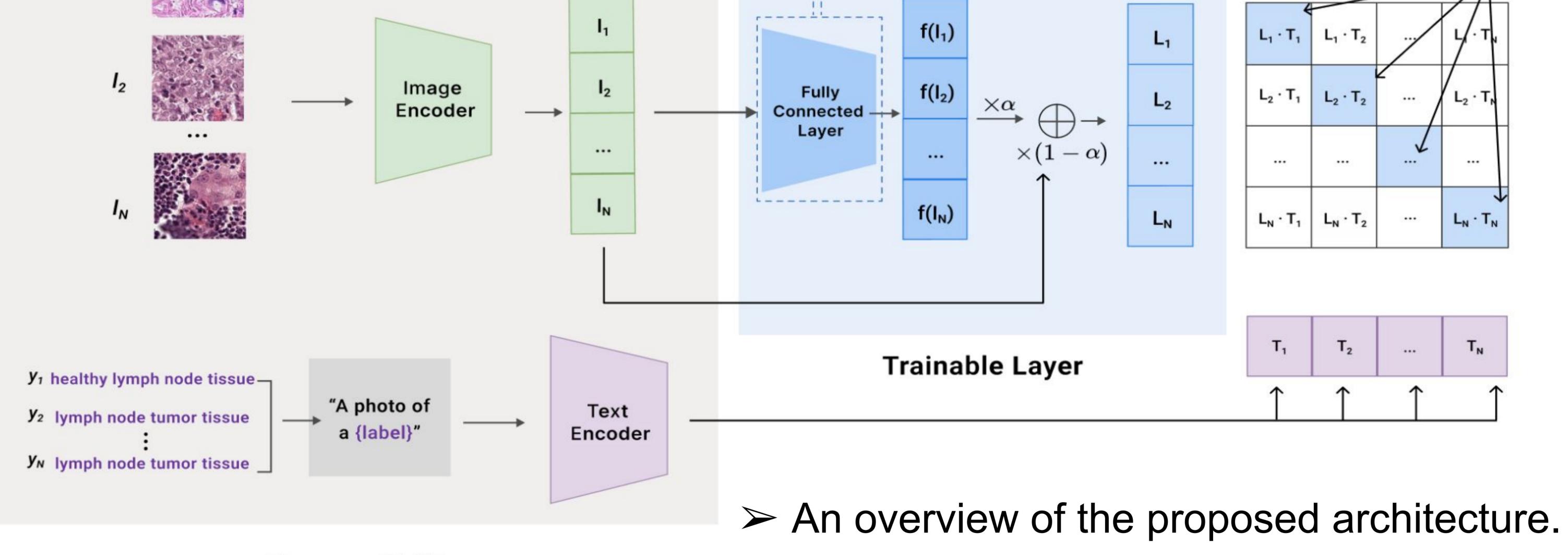
> CLIP zero-shot inference

000

₽ 1024

ICCV23

- Not scalable for multiple tasks
- Adapter-based fine-tuning
 - Freeze the whole network
 - Design a specific layer and only train it
 - Simple and scalable
 - Learning ability may be limited


Methodology

- > CLIP Residual Feature Connection (RFC)
 - Preserve pre-trained knowledge
 - Learn new knowledge
 - $\circ \alpha$: residual ratio to balance the above knowledge

> Contrastive Loss

• Keep contrastive loss in tuning • Preserve the pre-training properties

Update Weight
4
Minimize Contrastive Loss

00000

0

11

Frozen CLIP

Main Experimental Results on Two Public Pathology Datasets: PCam and MHIST

 \succ Quantitative results on the hold-out test set of PCam^[1]

 \succ Performance and Complexity comparison on PCam^[1]

Saantativo	roourto		

Algorithm	Data Usage	Accuracy	Recall	Precision	F1-score	AUC
CLIP	Zero-shot	56.5	50.3	57.4	53.7	0.600
	0.1%	76.4	90.0	70.7	79.2	0.849
	0.5%	81.5	85.0	79.4	82.1	0.894
	1%	81.9	82.9	81.3	82.1	0.900
CLIP + RFC	5%	82.9	77.1	87.2	81.8	0.918
	10%	82.8	79.2	85.4	82.1	0.914
	50%	81.4	71.0	89.6	79.3	0.918

 \succ Quantitative results on the hold-out test set of MHIST^[2].

Algorithm	Data Usage	Accuracy	Recall	Precision	F1-score	AUC
CLIP	Zero-shot	36.9	100.0	36.9	53.9	0.501
	1%	63.9	7.5	57.5	13.3	0.643
	5%	66.8	42.8	56.6	48.7	0.732
CLIP + RFC	10%	70.5	79.7	57.1	66.6	0.784
	20%	70.7	86.1	56.8	68.4	0.788
	50%	74.8	75.6	63.3	68.9	0.838

Data Usage	Algorithm	Accuracy	Training Time	
Zero-shot	CLIP	56.5		
0.1%	CLIP + CoOp	64.3	7 min 6 sec	
	CLIP + RFC	76.4	10 min 29 sec	
1%	CLIP + CoOp	61.9	53 min 21 sec	
	CLIP + RFC	81.9	11 min 56 sec	
10%	CLIP + CoOp	59.9	2 h 23 min 45 sec	
	CLIP + RFC	82.8	27 min 18 sec	

[1] Veeling, Bastiaan S., et al. "Rotation equivariant CNNs for digital pathology." Medical Image Computing and Computer Assisted Intervention–MICCAI. [2] Wei, Jerry, et al. "A petri dish for histopathology image analysis." Artificial Intelligence in Medicine: 19th International Conference on Artificial Intelligence in Medicine, AIME 2021.

* This work was supported by the Noyce Initiative UC Partnerships in Computational Transformation Grant and the UC Davis Center for Women's Cardiovascular and Brain Health research program under the HEAL-HER (Heart, BrEast, and BrAin HeaLth Equity Research) award made possible by the Cy Pres funds.